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Abstract
In this paper, I sketch a new model for the format of the content of understand-
ing states, Compressible Graph Maximalism (CGM). In this model, the format of 
the content of understanding is graphical, and compressible. It thus combines ideas 
from approaches that stress the link between understanding and holistic structure 
(like as reported by Grimm (in: Ammon SGCBS (ed) Explaining Understanding: 
New Essays in Epistemollogy and the Philosophy of Science, Routledge, New York, 
2016)), and approaches that emphasize the connection between understanding and 
compression (like Wilkenfeld (Synthese 190(6):997–1016, 2018)). I argue that the 
combination of these ideas has several attractive features, and I defend the idea 
against some challenges.

Keywords Understanding · Structure · Compression · Mental representation · Graph 
theory

It was an experience of water and interconnection [...] I was trailing my hand 
in the water and I thought about how the water was moving around my fingers, 
opening on one side and closing on the other. And that changing system of 
relationships where everything was kind of a similar and kind of the same, and 
yet different. That was so difficult to visualize and express, and just general-
izing that to the entire universe, that the world is a system of ever-changing 
relationships and structures struck me as a vast truth. Which it is. [...] And 
writing is the process of reducing a tapestry of interconnections to a narrow 
sequence. And this is in a sense illicit. This is a wrongful compression of what 
should spread out.

Ted Nelson, in Werner Herzog’s Lo and Behold
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1 Introduction

In this paper, I offer a model of the content of understanding states, Graph Maximal-
ism (GM), where the content of understanding states can be represented in terms of 
graphs, and a variant of this model, Compressible Graph Maximalism (CGM), that 
introduces a component of compression to GM.1 This model is intended as concrete 
way to combine the ideas that a) understanding involves some relation to structure, 
broadly speaking, and b) understanding can be fruitfully characterized in terms of 
compression.

My goal is to show that the combination of these ideas is fruitful. In fact, my 
argument in defense of the view will be mainly abductive: I will defend the view on 
the basis of its theoretical promise. I am mostly interested in showing that a ’pack-
age view’ like CGM should be endorsed by theoreticians who defend structure-
based or compression-based accounts of understanding. Although I present the view 
in opposition to what we may call propositionalism (the view that the format of the 
content of understanding is merely propositional), the spirit of the project is not on 
the main polemical–here, I try to be ecumenical even when I feel a preference for 
how to deal with certain points of detail (in many cases, defending those preferences 
would take us away from the main point, so I avoid committing to them altogether).

I should also make it clear at the outset that I do not intend to propose a full 
theory of understanding. That would require, among other things (but crucially, as 
attested by recent work on understanding), an account of the gradability of under-
standing and of when understanding attributions are appropriate. This is not some-
thing I will attempt to provide here (although I will give some suggestions on this 
point in Sect. 6.6). My focus will rather be in building an account of the format of 
the content of understanding, something that most philosophical accounts omit to 
give or treat only summarily. An account of the format of understanding provides at 
least a partial account of the measures of understanding, and that in turn gives mate-
rial to construct an attribution story. So even though I will not attempt to give an 
account of appropriate understanding attribution, I will touch on some of the issues 
that bear on the point.

I will first (Sects. 2 and 3) go back to the ideas that understanding bears relation 
to structure and compression, and give a brief overview of why they are attractive 
by summarizing the views of some of their proponents. This is mainly intended as 
set-up, and readers who are familiar with these ideas can skip over to Sect. 4, where 
I sketch Graph Maximalism. For modelling, Graph Maximalism uses some tools 
from graph theory, so for readers who are not well acquainted I begin by offering 
a brief introduction of the main concepts that are relevant here. Then, I proceed by 
outlining the basic idea (4.2), and then a fuller version (4.3). Once this is done, I 
outline the advantages I think the model has: it inherits the intuitive appeal of the 

1 In this paper, I will defend the idea that understanding states in general have graphical contents, that is, 
that for any state of understanding u, the format of the content of u is graphical. It is possible to qualify 
this further, but for reasons that will be made clearer later, I think the general version of the view is pref-
erable.
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understanding-and-structure accounts, it can help in the explanation of abilities 
related to representation manipulation and cognitive control, if offers a potentially 
unified format for the representations involved in understanding, and it yields a pow-
erful story of the measures of understanding (4.4). In Sect. 5 I extend GM with the 
idea that the relevant graphs can be compressed, give an overview of some ways in 
which this can be implemented, and show the epistemological significance of adopt-
ing a model of this kind. Finally, in Sect. 6 I address an assorted array of challenges 
to the approach.

2  Understanding and Structure

The idea that understanding has something to do with structure, broadly construed, 
is a commonplace in the literature on understanding, although the specifics vary 
widely. To orient ourselves, it is useful to distinguish between the target and the con-
tent of understanding. The target of understanding is what is understood; when we 
say that Ann understands how cheese is made, the expression ‘how cheese is made’ 
refers to the target of her understanding.2 Ann’s understanding plausibly (although 
not unquestionably) involves some form of representation of the target; and this rep-
resentation will have content, in a given format (propositional, pictorial, graphical, 
or else).3 Maybe Ann has something like a ‘mental picture’ of a procedure to make 
cheese: first, you do this, and then this other thing, and so on. What is important for 
us now is that we can talk of the structure of both the target and the content.

One may think, concerning the relationship between understanding and structure, 
that understanding targets are or must be structured in certain ways. One instance 
of this is Wittgenstein’s famous idea that there is a ‘kind of understanding which 
consists in “seeing connections”’ (2009, 122). ‘Connections’ here refers to what we 
see in the target.4 Various accounts of understanding emphasize the point that under-
standing involves some form of grasp of explanatory structure.5

In other proposals, what matters is rather that the content is structured in certain 
ways. For example, in Elgin (2009), understanding

2 In fact, here we should distinguish between the topic of understanding and the target proper. ‘How 
cheesse is made’ can be taken as a subject matter, a partition of logical space in various ways in which 
cheese is made, or as a particular cell in that partition, that is, the particular way in which cheese is made 
in the world that is relevant to our assessment of Anne’s understanding.
3 I will use representation-talk throughout, but I am not really committed to the existence of represen-
tations in the classical sense. It is enough for me that something can serve a certain functional profile, 
namely, one that is similar to the one of classical representations (that it can be said to be about some-
thing, that it is information-bearing, that it can be at least partially communicated). In any case, at this 
stage we are simply reviewing the literature on the connection between understanding and structure, and 
it is patent that there is a strongly representationalist strand to it.
4 Things quickly become more complicated, since Wittgenstein allows for understanding to be had by 
inventing connections.
5 Hazlett (2018) offers an account of the role of structure for understanding where ‘structure’ stands for 
something objective as well as joint-carving, and is required for understanding as apt theorizing: accord-
ing to the view, it is not possible to understand as apt theorizing if there is no objective structure.
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[...] is in the first instance a cognitive relation to comprehensive, coherent sets 
of cognitive commitments. (323)

For understanding subjects, Elgin also requires that they are able to see the connec-
tions between the elements of these bodies of information; this information must 
also be encoded in the content of understanding.6 Gardiner (2012) offers an argu-
ment about the value of integration that can be seen in this light as well.7

Both dimensions can also be conjoined, and this perhaps is the most common 
view. Elgin herself requires that understanding is grounded in fact in a range of 
interesting cases. To give a more explicit example, Kvanvig (2003) claims that 
understanding

[...] requires the grasping of explanatory and other coherence-making relation-
ships in a large and comprehensive body of information. (192)

In Kvanvig’s proposal the target is a cluster of different relationships, at the same 
time that the content is structured. He says nothing of the format of the content, but 
a view like this can easily accommodate a plurality of them. This is what we find in 
Zagzebski (2001), which is rather characteristic of this line of thought:

[...] understanding is not directed toward a discrete object, but involves seeing 
the relation of parts to other parts and perhaps even the relation of part to a 
whole. It follows that the object of understanding is not a discrete proposition. 
One’s mental representation of what one understands is likely to include such 
things as maps, graphs, diagrams, and three-dimensional models in addition 
to, or even in place of, the acceptance of a series of propositions. (241)

Another author who takes a mixed view of this kind is Stephen Grimm (2016, and 
elsewhere). His view is interesting first because he requires the target of understand-
ing to be structured:

the differences among these various objects of understanding can be (and 
has been) overstated, and the reason is that in all of these cases understand-
ing seems to arise from a grasp of what we might call dependency relations. 
Although when it comes to more complex structures (the House of Represent-
atives, for example) more of these relations are grasped than when it comes to 

6 A different account that stresses the importance of the structure of content is Meynell’s 2020 pictorial 
account.
7 Gardiner (2012) aims to attack veritism (the view that epistemic value is concerned only with truth). 
Her argument asks us to imagine to robots, Alpha and Beta, who ex hypothesi have the same propo-
sitional information about some topic, but who differ in that Alpha stores this information as a list of 
propositions whereas Beta stores them in a format that includes explicit connections, in ‘something akin 
to hyperlinks’. Gardiner argues that Beta’s epistemic state is more valuable than Alpha’s, because of the 
integration that this representational format affords. In fact, Gardiner argues (taking some hints from 
Stroud (1979)) that Alpha’s state could not have the same epistemic value as Beta’s, because of its lack of 
integration: the relation between the relevant facts simply cannot be represented by any number of propo-
sitions. I will return to this point in Sect. 4.4.
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understanding particular states of affairs, this does not amount to a difference 
in kind but instead to a difference in degree. (214)

In terms of the content, he also suggests that the content of understanding is struc-
tured. Drawing from the work of Gopnik et  al. (2004), he suggests that the con-
tent of understanding takes the form of mental maps. These mental maps should be 
taken to be ‘mobile’, in the sense of being able to adapt and change as the variables 
represented on the map take different values (ibid, 216). In Grimm’s account, under-
standing is manifested in the ability to see what could happen to the target in the 
respects of interest if it underwent a variety of changes.

3  Understanding and Compression

The second general idea we are interested here is that understanding is somehow 
connected with compression. Whereas, as we saw above, the idea that understanding 
is related to structure is widespread, the connection with compression has only been 
recently been made explicit, in the work of Wilkenfeld (2018). The idea has, how-
ever, antecedents in some earlier views on the connection between explanation and 
learning and compression (see, for example, Grünwald (2007) and Li and Vitanyi 
(2019), and in some views on mathematical learning (see Thurston (1990) and Gray 
and Tall (2007)).

Roughly speaking, representations of smaller size (by some measure) of some 
target compress it. In informational terms, a compressed representation R relative to 
a source representation R’ encodes the same information in less bits. The possibility 
of compression depends on the availability of redundancy and patterns in the source; 
this is why, for example, truly random sequences are incompressible–they are never 
redundant. Using this relative notion of representation-to-representation compres-
sion, we can define a notion of object-to-representation as follows: a representation 
R compresses an object O if it represents it and the size of R is smaller than the size 
of another given representation or of a maximally lengthy non-redundant representa-
tion of O (a representation that in this sense is ‘as good as it gets’).

Given this conception of compression, it is easy to see the appeal of linking 
understanding and compression. Complexity and size can be seen as impediments to 
understanding. A large assortment of facts without a way to systematize them seems 
to offer no easy way to gain understanding. The ability to compress depends on the 
ability to detect patterns in the available structure. Compression, then, manifests the 
realization of such capacities.

Wilkenfeld’s theory is that understanding is compression. The core of his account 
is his proposal for comparative judgements of understanding:

Understanding-as-Compression A person p1 understands object o in context C 
more than another person p2 in C to the extent that p1 has a representation/pro-
cess pair that can generate more information of a kind that is useful in C about o 
(including at least some higher order information about which information is rel-
evant in C ) from an accurate, more minimal description length [representation.]
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Wilkenfeld makes use of a Minimal Description Lenght (MDL) framework. The 
idea is that given a data set D and a set of hypotheses H , finding regularity in the 
data set consists in finding the set of hypotheses in H that compresses the data set 
the most.8 In particular, in Wilkenfeld’s proposal the goal is to minimize ‘the sum 
of the length of the description of a general hypothesis about how the data is struc-
tured combined with a description of the specific data in terms of that hypotheses’ 
(5), so that it is possible to generate the most information from the less information 
possible.

4  Graph Maximalism

For those who agree at least in part with both the understanding-and-structure and 
understanding-and-compression ideas, it may be desirable to find a way to combine 
them. In his paper on understanding as compression, Wilkenfeld (2018) tried to keep 
these approaches somewhat apart, plausibly in part because he wanted to stake out 
a place for his account as a distinct viable theoretical option. I think, however, this 
might give a wrong idea of the viability of a combined account. Wilkenfeld’s criti-
cism of Grimm’s account, who serves as an exemplar of the kind of mixed structur-
alist account of understanding we are interested in here, does not touch on the focus 
on structure as much as the idiosyncratic focus of Grimm’s theory on the idea that 
understanding is a species of knowledge. In fact, Wilkenfeld admits that possessing 
a mechanism for being able to check the counterfactual consequences of changes to 
relevant variables concerning a topic ‘will be a good way to encode some informa-
tion, as one will be able to remember general connections between variables along 
with lists of deviations rather than having to remember an indefinite number or pair-
wise (or more) relations’ (18). What he is saying here is that Grimm’s idea that the 
content of understanding takes the shape of mental maps is in effect in line with an 
MDL model.

So, what gives if we drop the understanding-as-knowledge idea and retain both 
the idea that the content of understanding is structured and the idea that understand-
ing involves compression?

Rather than producing a combination of Grimm and Wilkenfeld’s accounts, I will 
proceed by constructing a theory of the format of the content of understanding from 
the ground up. By format I mean the type of representational structure of the con-
tent’s vehicle. The format problem is whether the vehicle of this content is propo-
sitional (the traditional view), pictorial (like Meynell seems to suggest), graphical 
(as I will suggest here), or heterogeneous. Starting from scratch from this angle will 
allow us, I hope, to produce a clearer and more general picture of the problem space. 
It is important that I emphasize that I will not deal in full with the more substantive 
issue of what is in fact represented in understanding. While I will make suggestions 

8 A fuller overview of MDL is beyond my purposes here, so the reader is advised to refer to Grünwald 
(2007) for details. Later, in Sect. 5.4, I will describe in some detail a compression scheme for graphs in 
line with MDL ideas.
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as to what that is or may be, I don’t want to defend a particular view, at least not 
here. My hesitancy to do so also stems from the impression that a model where the 
content of understanding is heterogeneous is more plausible than one where it isn’t 
(but keep in mind that this is about heterogeneity in the content, not necessarily in 
the format of the content). The need to account for this possibility will be a con-
straint for the construction of my account.

In summary of what comes ahead, I will propose a ‘graphical’ account of the for-
mat of the content of understanding. According to this view, which I will call Graph 
Maximalism, the content of understanding has graphical structure, that is, it can be 
modelled with graphs. Before moving on to sketching the basic view (4.2), and then 
a fuller version of the idea (4.3), I will first give a brief summary of the graph-
theoretical concepts I will use throughout (4.1). After I do all this, I will argue that 
the view has many desirable features as part of a full account of understanding (4.4).

4.1  Graph Theory

A graph in the sense intended here is an object composed of vertices and edges.9 
Formally, it is a pair ⟨V ,E⟩ , where V  is a nonempty set of vertices, and E is a set 
of pairs of items in V .10 For our purposes here, we are interested in general graphs, 
where it is allowed for an edge to go from and arrive at the same edge, forming a 
loop, and where it is allowed for multiple edges to connect the same vertices.11 We 
will also allow for vertices and edges to have various kinds of information attached 
(Fig. 1).

A vertex in a graph can be adjacent to another if there is an edge between them. 
There is a walk between two vertices if there is a sequence of adjacent vertices 
between them (the edge between to adjacent vertices is already a walk). A path is 
a walk with no cycles. A vertex can be adjacent to more than one other vertex. The 
number of vertices that a vertex is adjacent to is its degree. When vertices are con-
nected by directed edges, we say that a vertex’s outdegree is the number of distinct 
edges that begin at the vertex, and that its indegree is the number of edges that arrive 
at the vertex.

In a disconnected graph, there is at least a pair of vertices that are not connected 
by any path (for example, if in G1 the edge between c and d was missing, there would 
not be a path between c and d, and the graph would be disconnected). In general, the 
connectivity of a graph is a measure of how easy it is for it to become disconnected 
after a series of manipulations. The existence of any given path between two vertices 
in the graph depends on the connectivity of the graph. A graph where each vertex is 

9 A good introduction to graph theory can be found in Hartsfield and Ringel (2003). For a broader view, 
see Bondy (2008), and for an algorithmic approach, see Jungnickel (2005).
10 I will allow edges to be both directed or undirected. The main difference is that directed edges are 
ordered pairs of vertices.
11 This is sometimes called a pseudograph, because it lacks some properties of graphs that disallow 
these things.
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connected to every other and thus there is a path for any combination of vertices is 
called a complete graph.

A graph G is a subgraph of a graph F iff every vertex of G is a vertex of F and 
every edge of G is an edge of F.

Besides the pair-of-sets representation given above, graphs can be represented in 
various ways. An adjacency list of a graph G is a set of pairs ⟨V ,A⟩ , where V is 
a vertex in G and A is a set of vertices that are adjacent to V in G. An incidence 
matrix is a V × E matrix where each cell represents how many times a vertex and 
edge are incident. An adjacency matrix is a V × V  matrix where each cell represents 
the number of edges adjoining a pair of vertices (Fig. 2).

In Sect. 4.4 I will make use of two more graph-theoretical notions that are of a 
more specialized use. First, the degree matrix GD of a graph G will be a diagonal 
V × V  matrix that represents how many vertices are adjacent to each vertex (com-
pare with the adjacency matrix). Second, a Laplacian matrix L of a graph will be the 
difference of the degree matrix D and the adjacency matrix A, that is, D − A (Fig. 3).

Note that the degree matrix is not suitable as a graph representation in the sense 
that adjacency or incidence matrices are: different graphs can share the same degree 
matrix.

4.2  The Basic Idea

As I already pointed out, Graph Maximalism hinges on the idea that the format of 
the content of understanding states is graphical. What this means is that the struc-
ture of the content is the structure of a graph in the mathematical sense we just 
described: it contains items that play the role of vertices, and other items that con-
nect them and play the role of edges. Accordingly, the attitudes directed towards the 
content of understanding are directed towards graphical structures. This vindicates 
in part Elgin’s idea that understanding is in the first place a relationship to a compre-
hensive body of information; in our case, this body of information takes the shape of 
a graph.12

The graphical model contrasts with a propositional model, where the content of 
understanding is composed of propositions. A model like that may be implicit in 
some reductive accounts of understanding, where understanding is taken to consist 
in knowledge of some sort, for example. However, it is more fair to say that in fact 
most accounts have never actually addressed the issue of the format of the content 
of understanding, so they have defaulted into something that is more traditional. As 

12 There are actually two ways in which we can take this idea. On the one, we can say that the content of 
an understanding state is a kind of graph. On the other, we can say that it suffices that the content can be 
represented by means of a graph. As a reviewer points out, the former is prima facie a far stronger claim. 
For my purposes here, the weaker claim suffices. However, perhaps it would be better to say the follow-
ing: the content of an understanding state is a concrete graph, an object (of some kind) with graphical 
structure (so, it exemplifies what we may call an abstract graph, which is the subject matter of graph 
theory), similarly to how Fig. 1 (the diagram inscribed in the page) is a concrete graph that exemplifies 
an abstract graphical structure. In these cases we recognize that these objects have this structure because 
we seem to be able to represent some of their features in a graphical manner.
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we saw in Sect. 2, there have been some exceptions like Zagzebski and Elgin, but 
they have not been fully explicit on their own proposals either, falling back into a 
form of undiferentiated pluralism regarding the format. While I think that a form 
of pluralism is perhaps plausible (a point I alluded to before), I think the hypothesis 
that the format of the content of understanding is uniform should be reconsidered 
outside the narrow confines of the propositional model.13 For my purposes here, I 
will assume as a working hypothesis that a graphical format can be the single format 
for the content of understanding. The graphical model should be evaluated in terms 
of its universality only once it is made more precise–which is what I am trying to do 
here. If the graphical model cannot do all the work that we want out of an account 
of the format of understanding, let us then adopt a pluralist view (and this may allow 
for propositional content). However, I hope to convince the reader that the graphical 
model can go a long way.

In its basic form, Graph Maximalism can be formulated as a necessary condition 
for understanding, as follows:

Graph Maximalism (Basic) S understands X only if S’s cognitive state U can be 
characterized in terms of a pair ⟨G,D⟩ of a graph G relevantly connected to X, 
and a dispositional profile D related to G, that includes the capacity to process it 
and manipulate it.

Put less formally, Graph Maximalism requires that in order for someone to under-
stand, the content of their cognitive state must take the format of a graph, which the 
subject must be capable to process and manipulate. The idea that the subject ‘has’ 
the data in the graph available must be understood in a more or less thick sense, and 
an account of attribution would plausibly specify a sense that is thick enough for the 
subject to merit attribution (for example, it might then be required that the subject 
not only has the data, but is also able to use it competently for a range of tasks). 
Here we are satisfied with much less.

One important class of capacities that should belong to D is the ability to con-
struct other representations (including other graphs) from G on demand, and much 

Fig. 1  G1 = ⟨V = {a, b, c, d},E = 
{{a, b}, {b, c}, {a, c}, {c, d}}⟩

13 A defender of the propositional model could argue the same point, suggesting that propositional con-
tents can be heterogeneous in ways that accommodate the intuitions of those critics of the propositional 
model. This has been in fact suggested in the case of so-called mental maps. Camp (2018) offers an 
attack on those attempts.
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of what follows hinges on these capacities (to anticipate a bit from Sect. 5, a graph 
is in some sense compressible when the subject has the capacity to produce a com-
pressed representation of it). We may say that this is latent content of the state, and 
that a state ⟨G1,D1⟩ with latent content L1 is l-equivalent to the state ⟨G1 ∪D1

L1,D1⟩ , 
where G1 ∪D1

L1 is whatever graph results from updating G1 with the contents of L1 
(given the capabilities to update G1 in D1).

Note that the class of subjects who satisfy the condition that Graph Maximalism 
imposes on understanding is broader than the class of subjects who at some point of 
evaluation are attributable with understanding. Since their cognitive state may be the 
basis for understanding attributions, we may say that they are in an understanding-
like state–a state that is like an arbitrary understanding state in some respects but 
that is not necessarily attributable with understanding. Graph Maximalism can thus 
be construed as a definition of what it is for a state to be understanding-like. This is 
important because a theory of understanding should offer an account of understand-
ing-like states, but I will not press the point further here.14

Fig. 2  Alternative representations of G1

Fig. 3  Other graph matrices 
of G1

14 Cf. Elgin’s (2009) criticism of Kvanvig (2003) concerning the issue of whether certain individuals 
should be attributed with understanding in an ‘honorific’ but not literal sense, which can be interpreted in 
terms of whether the subjects are attributable with understanding or merely with something understand-
ing-like. From a broader perspective, we should acknowledge that ‘mere’ understanding-like states can 
also have epistemological significance.
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4.3  The Full Picture

The basic picture I just gave of the GM model is insufficient in several respects.
First, it does not properly characterize the state of subjects in view of their poten-

tial coupling to their environment/context. It may be desirable to be able to distin-
guish between two subjects who have the same representation of a topic in worlds 
where the topic is realized differently. As I pointed out above, we need to distinguish 
between the target and the content of understanding. In a representational frame-
work, we will want to measure how well the representation of the target matches the 
target. This is a property of the state that we can’t recover purely from the intrinsic 
properties of the representation.

Accordingly, we will distinguish between what we may call the internal graph, 
which is the representation itself, and the target, and make both characterize the 
state of understanding subjects. For simplicity purposes, and given that we may sup-
pose that the target of understanding is itself structured, we may talk of an external 
graph instead of a target. Otherwise, we might also call this the blob or lump.15 For 
cases where representational accuracy is not relevant, we may neglect to deal with 
specifying an external graph.

The introduction of an external graph or a blob as target requires some observa-
tions. First, there is the problem that understanding subjects might simply lack the 
means to acquire information about such graph. But more importantly, the model 
seems to require that its users (namely, us) are able to discriminate what such graph 
could contain. We are allowed perhaps to assume that our own understanding offers 
a picture of whatever that is, but this is of course unsatisfactory.

Second, the idea that there would be only one of each internal and external graphs 
may be implausible. A subject’s overall understanding state, the sum of all that they 
understand, will plausibly target multiple disconnected topics–such state should 
be at least characterized in terms of multiple external graphs, and it may require 
multiple internal graphs as well if the subject has no way to piece all those topics 
together.16 Note that this will not only happen at this level: dealing with a delimited 
topic may also require the subject to target distinct structures in different represen-
tational clusters (for example, understanding a social system may involve the repre-
sentation of causal structure but also of symbolic structure).17 The same target can 
also be represented by different internal graphs (for example, when different repre-
sentations may serve different purposes or when the subject has not settled between 
conflicting views). Finally, the same internal graph could represent different targets.

15 Cf. Eklund (2008).
16 The world might be ‘dappled’, as Cartwright (1999) suggests. See Strevens (2017) for a critical dis-
cussion.
17 This suggests that the external graph might itself be a kind of composite, with a layered structure, or 
even that there could be a multitude of external graphs. In this case, different layers or graphs could be 
more relevant to different tasks.
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Thirdly, and given the previous points, understanding states should also be char-
acterized in part by the kind of mapping there is between internal and external 
maps.18

Given these adjustments to the view, Graph Maximalism should be stated more 
precisely as follows:

Graph Maximalism (Full) S understands at t only if S is at t in a state U character-
izable by a 4-tuple ⟨GI ,GE,M,D⟩ , where GI is a non-empty set of internal graphs, 
GE is a possibly empty set of external graphs, M is a mapping between elements 
in GI and GE , and D is a dispositional profile associated to possible manipulations 
of GI.

While this will be the form of GM that I will work with in this paper, it still fails to 
accommodate a final complication with the format of the internal graph(s). While 
the same graph can have different drawings (concrete realizations), we might want 
to say that different drawings of the same graphs will offer different mental con-
tents, and that their ‘appearance’ itself offers information that is relevant to their 
understanding state.19 To some degree, this can be simulated by graphical states that 
store the topology of drawings, but it seems more plausible that the format of under-
standing states should embody this more directly. So the model should really deal 
with the drawings of graphs rather than the graphs properly speaking. This preserves 
many of the properties of the graphical model and extends it in the way required.20

4.4  Advantages of GM

A graphical model like GM has several nice features.
First, GM offers a concrete implementation of the idea that understanding has 

to do with structure. The full GM model has a way to account for both external 
and internal structure, and it stresses how understanding is not just a matter of hav-
ing certain information available, but also having the capacities to process and 
manipulate it. To the degree that these ideas are attractive (and as we have seen in 
Sect. 2 this impression seems to be widespread), the GM model seems to be initially 
plausible.

Adding to this last point, a graphical model like GM should be able to explain 
at least partially the specific abilities that are characteristic of understanding, such 

18 In principle, we could ask that the mapping relation satisfies certain constraints, but I think this is 
more relevant to the issue of understanding attribution (it could be that a subject’s state is only attribut-
able with understanding if the mapping relation satisfies certain conditions). As I said before, I don’t 
want to offer an account of understanding attribution here.
19 With mathematical graphs, appearance is a matter of how the graph is embedded in some space (cf. 
Gross and Tucker (1987) on topological graph theory, with deals with this kind of object). In the present 
case, there seem to be two options: the internal graph may afford different conditions for mental access, 
or it may have an imaginistic component with spatial properties.
20 The resulting format is not only graphical, but also in a sense pictorial, which allows us to capture 
some of the insights from Meynell (2020).
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as representational manipulability (Wilkenfeld , 2013) and cognitive control (Hills 
, 2016). Whatever cognitive capacities understanding involves, they must supervene 
on the properties of the underlying representational format: the relevant subjects 
would not have these capacities if the format of their representations was not as it 
is. The scope of the capacities invoked in this supervenience claim has to be under-
stood narrowly. For some of these capacities, what format they will be supported 
by will not matter for their possession; plainly, for example, the capacity to produce 
explanations can be had by someone whose understanding is based on propositions 
or on graphical structure. However, the format could matter for their specific per-
formance or reliability. In the limiting case, there can be capacities that can only 
be supported by specific formats. Stroud (1979) and Gardiner (2012) have sketched 
arguments to this effect in favor of the idea that understanding couldn’t have a purely 
propositional format. Stroud, in particular, wanted to show that the structural rela-
tions between beliefs cannot be captured by further beliefs; something else, perhaps 
dispositions, is necessary. This is compatible with understanding having a proposi-
tionally formated content linked to some appropriate dispositional profile. Gardiner 
goes further, formulating her argument in terms of the difference between a sub-
ject whose beliefs are stored as a list of propositions and another who also stores 
the links between beliefs.21 The latter can do something that the former cannot do, 
which is storing information about the relations between their beliefs; Gardiner 
argues that this cannot be done by the former on the risk of regress.22

A graphical model also offers something that can act as a unified format for 
thought. Graphs are very flexible and can serve as a mechanism to emulate other 
formats as well. For example, sequences of propositions can be easily represented in 
the form of linear graphs.23 In this sense at least, we could see the graphical model 
as not entirely in opposition to the propositional model, since what it captures can 
be taken as a special case of what can be captured by a more general graphical 
model (namely, it captures contents that can be represented as linear graphs). Argu-
ments can be represented by trees. From an architectural point of view, a common 
format that can serve as input or output of a wide range of mechanisms is desir-
able. Besides, the supposition that there is such format also allows us to simplify 
our account of understanding. Whether this supposition is empirically supported is 
another question (I will return to this point in Sect. 6). Ultimately, while I think the 
idea that graphs can act as a unifying format for thought is attractive, I don’t wish to 
commit to it, since I think pluralism about the format may have certain advantages 
as well. I return to this point in Sect. 5.4.

21 See footnote 7.
22 On a similar point, one may be reminded of some ingenious arguments in Kitcher and Varzi (2000) to 
the effect that pictures (and we may try the assumption that at least some pictures are graphs) are worth 
2ℵ0 sentences.
23 Unordered collections of propositions can be represented by a disconnected graph, where every ver-
tex/proposition has a degree of 0, or as complete graphs (from any proposition of the collection you can 
proceed to any other). Now, this lack of structure is arguably not even true of written text, since there can 
be an assortment of different relations between the sentences in a textual body. To that extent, the purely 
propositional model is also a bad representation of the expression of thoughs.
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Most importantly, the graphical model seems to support a much richer account 
of the measures of understanding, and in turn a more specific attribution story. For 
one, the capacity to measure how well the internal graph matches the external graph 
is built in, and this gives us a measure of accuracy. Likewise, the breadth of the 
state will plausibly be measured in terms of how large the union of external graphs 
that are matched by the internal graphs is. Depth can be construed in terms of how 
dense the graph is. If (some) edges represent compatibility relations, coherence will 
require that the subgraph of the vertices that are adjacent to each other through com-
patibility edges is complete. And so on.

While it is not my intention to provide a full account of the different measures 
that are available in the graph model, it is important to point out that for some of 
these measures, the graph model is much more efficient than the alternatives, and 
that in some cases these measures can only be described if we make use of some-
thing like it. In these cases, the graphical model offers perspicuity whereas the ordi-
nary ways to characterize these measures are much less descriptively rich or simply 
non-existent.

An example of this is robustness. A typical reconstruction of the notion is modal: 
roughly, a subject’s understanding is robust if at large certain features of their under-
standing (such as coherence) are resistant to the introduction of new information, 
where resistance is understood in terms of counterfactuals to the effect that if certain 
events concerning understanding (in the case at hand, informational updates) hap-
pened, the relevant properties of understanding would remain relevantly the same. 
This is only a rough sketch of the point, but it will do for my purposes here.

In the graphical model, changes to the content can be represented as changes to 
graphs (the insertion or deletion of vertices, the addition or deletion of edges, and so 
on). We may be worried about the robustness of the structure of the graphs through 
changes of these sorts. For example, we may worry about the ease with which the 
graph (or, most likely, a subgraph of it that encodes consistency relationships) could 
become disconnected–a function of the (sub)graph’s connectivity. Connectivity can 
be measured quite precisely in the graphical model. The most straightforward meas-
ure of connectivity is the number of edges or vertices that it would take to delete in 
order to get a disconnected graph. Alternatively, the degree of connectivity could be 
measured as a real value. For example, it is known that the second eigenvalue of the 
Laplacian matrix gives a continuous measure of how close the graph is from being 
disconnected (a value of 0 means it is disconnected, and small values that it is close 
to being disconnected)–this measure is called algebraic connectivity. There is noth-
ing particularly significant about this measure in particular; there is an abundance 
of measures of connectivity in the literature.24 My suggestion is that this body of 
knowledge can and should be applied to the study of epistemic states of a ‘holistic’ 
character.

24 See Oellermann (1996) and Freitas et al. (2022) for surveys. Some connectivity measures are com-
putationally expensive, so there is some interest in devising connectivity measures that are useful more 
broadly. Cf. Beineke et al. (2002).
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5  Compressible Graph Maximalism

We now have a more or less complete picture of a graphical model of the format of 
understanding states. While this account captures the understanding-and-structure 
intuitions, it does not capture the understanding-and-compression intuitions. Fortu-
nately, GM can be extended to accommodate them quite simply. In this section, I 
will offer an extension to GM that introduces two dimensions in which understand-
ing states can exhibit compression. I will call the resulting model Compressible 
Graph Maximalism (CGM). First, I will stablish some additional distinctions that 
will be of use later, concerning the compression of graphs (Sect. 5.1). Then, I will 
argue that in a compressible graph model we can think of the issue of how the inter-
nal graph compresses the external graph (Sect. 5.2), and also of the issue of how 
the internal graph can itself be compressed (Sect. 5.3). Finally, I will discuss some 
implementations of the idea (Sect. 5.4).

5.1  Graph Compression and Summarization

As we pointed out, compression relies on the existence of structural patterns. The 
structural properties of graphs are ripe with possibilities for compression. We 
already saw different ways to represent graphs, as matrices or lists of several kinds. 
Computationally, these representations afford different tradeoffs in terms of size 
and algorithmic complexity. For example, adjacency matrices make it easy to check 
if two vertices are connected by an edge, but are fairly large because they have to 
encode a lot of unnecessary information about what connections fail to exist (all 
cells in the matrix with 0 values). On the contrary, adjacency lists make it easy to 
see what vertices are adjacent to a given vertex, and take up much less space, but 
make it harder to check if an edge exists.

These representations of graphs are lossless, since all the information about the 
graph can be recovered from them. For certain purposes, lossless representations 
are not necessary. In particular, sometimes we want to represent only the most sig-
nificant features of a graph; in those cases, we can make use of lossy formats. More 
generally we will talk about making a summary of a graph, or graph summarization. 
It is important to note that what counts as a good graph summary is task-dependent: 
since a summary is intended to represent only features of interest, interest needs to 
be defined in context.25 While summarization is a form of compression, in what fol-
lows I will prefer using the term ‘compression’ to refer kinds of compression that do 
not select features by a measure of interestingness (unless by the context it makes 
sense to refer to the general class).

Previous work on the role of compression for understanding has not made a dis-
tinction between compression and summarization. For many purposes, for under-
standing what matters is not just the size of the representations used, but their ability 
to represent useful features. Significantly, it is possible to generate information that 

25 Liu et al. (2018) give an excellent overview of summarization techniques and challenges.
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is not explicitly represented from a summary just as it is possible to generate it from 
a merely compressed representation. What will differ in these cases may be the qual-
ity of the generated information, which may in turn impact performance of the tasks 
where understanding is required. But it is possible for the same task-relevant infor-
mation to be generated from a summary and a merely compressed representation–in 
this case, if there is a difference in performance, it may depend on the properties of 
the particular mechanisms that generate this information.

5.2  Compressing the External Graph

How can we integrate compression into the GM model? Part of the answer is 
straightforward, since in a model like GM, there are only two points where com-
pression can happen or where it can be introduced. On the one hand, we can see the 
internal graphs as compressed representation of their targets, the external graphs. 
On the other, we can see that the internal graphs can themselves be more or less 
compressed. In this section I will deal with the first point.

As we already saw, GM incorporates an external graph as part of the state that 
characterizes a subject’s understanding. This was initially done so we can capture 
properties like accuracy in the model as a measure of the state. As it happens, this 
feature of the model also allows us to measure in principle how well an internal 
graph compresses an external graph that it is mapped to. In this sense, external com-
pression is a constitutive feature of a process that generates internal graphs–internal 
graphs can be generated by compressing the external graph and storing it.26 The 
external graph GE is e-compressible to the degree that the subject can produce a 
compressed internal graph of it.

There are some complications. In general, we can suppose that many kinds of 
representation of extra-mental items involves some form of compression (infor-
mally, representations tend to not capture all available information about their extra-
mental targets, so they are lossy with regards with a supposed ideal complete rep-
resentation of their targets).27 This, however, does not mean that it is in principle 
possible to assess if a representation is compressed in absolute terms–we do not gen-
erally have access to those ideal complete representations. So we cannot in general 
measure how much information was lost in the process of compressing the external 
graph–to do that we would need access to information that we do not have access 
to.28 In practice, to assess that a given internal graph compresses an external graph, 

26 In the full GM model there may be multiple internal graphs, and each could be the product of a differ-
ent operation where the external graph is compressed.
27 Representations of representations could in principle be copies of their targets, so they won’t neces-
sarily involve compression.
28 This can be generalized as an objection to understanding accounts that rely on ideal states in order 
to account for degrees of understanding (like in Khalifa (2017) and Kelp (2021))–in those accounts 
degrees correspond to the distance between a given state and some ideal. If we cannot in general say how 
a state approximates ideal conditions, we cannot say to what degree of understanding it corresponds to 
(although we could still make relative comparisons, and that is all it takes to give an account of outright 
attribution). Cf. Baumberger (2019).
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we need to be able to judge that at least there is some representation of the external 
graph that is less compressed, and this additional representation needs to be pro-
duced through interaction with the external graph in some way that is comparable to 
the way by which the internal graph was produced.

This complication arises because if the internal graph is lossy there is in principle 
no way to recover the information that was lost. Even if we had an ideal decom-
pressing mechanism that was able to extract as much information from the graph as 
possible, we would not in principle be able to dismiss the possibility that the target 
could have elements that the graph does not represent. One could have a mecha-
nism that generates new information that could supplement in some ways that which 
can be extracted by such ideal decompressing mechanism, however (call the result 
of a mechanism like this an inflated representation of the target). On the basis of 
something like this we might be able to say that the target might be compressed 
by the graph: there is a possible object that is similar to the target of the graph that 
when compressed would take more space than the best representation of the target 
we can recover from the graph. But we cannot say with certainty that this object is 
the target.

While there is no way to circumvent this limitation, it can be defused somewhat. 
A subject could simply make use of an inflated representation as a measure of the 
relative compression of the internal graph–this inflated representation may itself be 
graphical, although this is not strictly speaking necessary. While the resulting meas-
ure of compression is not accurate, it may be a good enough approximation for most 
purposes, since it would allow for relative comparisons. There are various ways to 
accommodate this element into the GM model. For example, the inflated representa-
tion may replace the external graph in the characterization of the understanding state 
of the subject, or it may be added as an additional parameter to such characteriza-
tion. It could also be enough that the subject has the capacity to produce an inflated 
representation on-demand, in which case the inflated representation could be taken 
as part of the virtual content of the state. I think this option may be preferable since 
what counts as a good representation of the target will depend on the context and 
thus may need to be updated dynamically.

In any case, compression of the external graphs can be a source of performance 
differential between subjects engaged in tasks that make use of their understanding 
of certain subject matters. How efficiently they have compressed the graph can make 
a difference to their competence in using the relevant information when prompted. 
The degree of a subject’s understanding is in part a function of their compression 
of their external graphs. The contribution of external compression to the degree of 
understanding is not straightforward, however: it may be that a more compressed 
internal graph could be less efficient for a given task that one that is less compressed. 
Whether compression improves performance is a matter of tradeoffs.

5.3  Compressing the Internal Graph

Once we have an internal graph, we may ask whether it can be compressed further. 
Unlike external compression, which is a form of representation production (as we 
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just saw), internal compression is a form of representation manipulation. A subject 
S’s internal graph GI is i-compressible iff S can produce a compressed graph from 
GI , that is, if C(GI) ≠ GI , where C(GI) represents an application of the compression 
manipulation on GI.29

For internal compression, we need to consider two types of cases: first, cases 
where graphs are compressed in place, and second, cases where compressed graphs 
are added to the set of internal graphs. When the compression operation is lossless, 
this difference is not significant, but in-place lossy compression entails a net loss of 
available information extractable from the internal graph in situations where there is 
no redundancy. Suppose GI was a set of two internal graphs GI1,GI2 that losslessly 
compress the same information from an external graph GE (this is the original state 
s0 ). Compressing GI1 further losslessly causes no loss of overall available informa-
tion (this is state s1 ), which means we can go back to state s0 . Then, compressing GI2 
losslessly does not cause loss of information either (this is state s2 ), which means we 
can go back to state s1 and thus to s0 . Compressing GI1 lossily does not reduce over-
all available information, since it was redundant (this is state s4 ). But compressing 
GI2 lossily at this point makes the state does reduce the overall available informa-
tion, and it becomes impossible to go back to the previous states (this is state s5).30

Allow me to digress slightly with some general observations about what the GM 
model suggests about the nature of understanding, since they bear on the dynamics 
of internal compression. The content of a subject’s understanding is subject to con-
tinuous change during their interaction with the world and during their own inner 
lives. In terms of the GM model, this means that internal graphs are constantly being 
updated, by adding, replacing or removing vertices and edges. Each update to this 
state offers a new opportunity for compression, which is itself a kind of update to the 
content of internal graphs. As new facts are learnt, new patterns and consequently 
redundancy may be discovered and made available.31 This process is not necessarily 
explicit nor guided by the subject itself. It is not, however, a shadowy process behind 
the subject’s cognitive life. Rather, it is the systematic operation of the subject’s cog-
nition as a whole. Part of the dynamics of understanding will have to do, then, with 
the coordination of the different components of this overall system. For example, 
since in the full GM model there may be a multitude of internal graphs mapped to 
the same targets, we may expect them to go out of sync as the system develops. For 
the system to remain consistent, some kind of monitoring is necessary.

Like in the case of compression of the external graph, compression of the inter-
nal graph can be a source of performance differential between subjects. A more 
efficiently compressed internal graph can make a difference in the competence of 

29 C(G
I
) does not need to be smaller than G

I
 . Because of the combinatory pigeonhole principle, if C is a 

lossless operation, compressing some internal graphs is bound to generate larger representations. In prac-
tice, this leads to the use of domain-specific compression algorithms. See Tate (2003).
30 It is already impossible to go back to s3 from s4 if it is not known that G

I1 and G
I2 are supposed to 

represent the same target (note that this information is tracked in M in the full GM model). If it is known, 
one could simply replace G

I1 for G
I2.

31 In fact, it is possible that the subject or their cognitive system may learn new compression strategies 
as a result of this as well.
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a subject to any task that requires understanding. So it is plausible that the degree 
of someone’s understanding is a function of their internal compression as well. The 
same caveats that we raised about the contribution of compression to the degree of 
understanding in the external case apply here.

5.4  An Implementation

Until now, we have considered the question of the compression of understanding 
content abstractly. We should take a close look at the question of how this content 
could be compressed, if its format is graphical. There is an abundance of compres-
sion schemes for graphs, so I will limit to describe one scheme that is both simple 
and illustrative.32

Navlakha et  al. (2008) describe a general graph representation that has some 
interesting compression features. In this model, a graph G is represented by a pair 
⟨S,C⟩ where S is a graph ⟨VS,ES⟩ , the summary, and C is a set of what we will call 
edge corrections. The vertices in the summary graph are themselves sets of vertices 
in G . When there is an edge between two vertices v′

S
 and v′′

S
 in the summary, one 

can draw an edge between every vertex w ∈ v�
S
 to every vertex w� ∈ v��

S
 . It may turn 

out that some of these edges do not exist in the original graph, or that some edges 
are still missing. These differences between the original graph and the summary are 
recorded as edge corrections: if some edge {v1, v2} is missing, it will be recorded as 
⟨+, {v1, v2}⟩ , and if it should be removed, as ⟨−, {v1, v2}⟩.

To understand how this representation can be useful in a compression scheme, 
let’s consider its application to the simple graph G1 from Sect. 4.1. First, we can rep-
resent G1 exactly by a pair R1 where C is empty, and S is structurally identical to G1

,33 that is,

If we summarize the graph as if G1 was a complete graph (that is, one where each 
vertex is connected to every other), we would need to correct for a couple of unnec-
essary edges. We could then represent G1 as

which is more compact. While the differences are not so striking in such small 
graph, they can be significant in large ones (Fig. 4).

R1 = ⟨S = ⟨{A = {a},B = {b},C = {c},D = {d}},

{{A,B}, {B,C}, {A,C}, {C,D}}⟩,

C = �⟩

R2 = ⟨S = ⟨{A = {a, b, c, d}}, {{A,A}}⟩,

C = {⟨−, {a, d}⟩, ⟨−, {b, d}⟩}⟩

32 Besta and Hoefler (2018) give a survey of lossless graph compression schemes, and Liu et al. (2018) 
one for graph summarization. A more limited survey can be found in Zhou (2015), from which I take the 
scheme I discuss here.
33 Strictly speaking, while in G1 the set of vertices is {a, b, c, d} , in R the set of vertices should be 
{{a}, {b}, {c}, {d}} . Similar points can be made about the sets of edges.
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What this illustrates is that depending on how the graph is summarized, it is pos-
sible to achieve varying degrees of compression. In fact, the scheme corresponds 
quite closely to one idea from the MDL literature, which is that compression can 
be achieved by providing a general hypothesis about the data along with additional 
information about the specific case at hand in terms of the hypothesis.34 The former 
role is played by the summary graph, and the latter by the edge correction set. Fig-
uring out a compression algorithm for graphs that uses this type of representation 
involves figuring out how to produce a summary/edge correction pair with a small 
cost (understanding cost as the sum of the size of these components); finding the 
representation with the smallest cost is the same as computing what is called its 
MDL representation. An MDL representation is essentially lossless, but the scheme 
can accommodate lossy compression by, for example, removing edges from an 
MDL representation and checking if some constraints on error are satisfied. Nav-
lakha et al. (2008) describe various algorithms for finding MDL representations, as 
well as others for approximate representations; the reader is advised to check them 
for the details.

Describing this model of graph representation, and how compression schemes 
could make use of it, is merely meant to illustrate some of the principles for graph 
compression. Concretely, what schemes could actually be implemented in human 
understanding is an empirical question. Furthermore, on the assumption that human 
representations are somewhat heterogeneous (Pearson & Kosslyin , 2015), it may 
seem implausible that human cognitive systems could make use of a single compres-
sion scheme. Different mechanisms could be specialized to different types of tasks; 
and in fact the particular format of the contents of understanding could vary even 
though its graphical character could remain constant.35 For some purposes, simple 
graphs are sufficient; for others, general graphs are necessary; for yet another, topol-
ogy matters; in some cases, tree-like graphs are enough; and so on. Here I am satis-
fied with outlining the basic idea of a graphical model of understanding that incor-
porates an element of compression.

6  Challenges

We have an overview of how the CGM model and some of its purported advan-
tages. I will now dedicate some time to addressing some potential concerns with and 
challenges to the model, in no particular order: the worry that the model introduces 
extraneous properties to our theory of understanding (6.1), the concern that it is not 
clear what the model actually represents (6.2), the problem that it does not seem to 
handle perspective (6.3), the objection that it is too committed to representationalism 

34 If you remember, this was also the idea behind Wilkenfeld’s MDL-based proposal.
35 The graphical model is compatible with there being other non-graphical formats for representation–it 
is not necessary part of the model that all representation is uniformly graphical. Here I have assumed the 
weaker thesis that the vehicles of understanding could be uniformly graphical, but I would not think it 
strange if ultimately the picture would have to be more complicated even in this particular case.
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when there are alternatives (6.4), the issue that it seems to focus too much on the 
internal state of subjects and does not account for the use of tools for understanding 
(6.5), the question of what kind of attribution story can be given for this model (6.6), 
and the problem that it may not be an accurate picture of human understanding (6.7).

6.1  The Model Introduces Extraneous Properties

Making the format of the content understanding explicitly take on the form of 
graphs allows us, as we have seen, to utilize all manner of graph-theoretical ideas 
to describe understanding states. In Sect. 4.4 this was touted as an advantage. How-
ever, this also introduces a mass of mathematical truths the instances of which could 
then be interpreted as truths about understanding states but which do not match at all 
our preconceptions of what understanding is like or are entirely disconnected to the 
issues that we are worried about related to understanding.36 This ‘excess theoretical 
load’ can be taken as a sign that the model is too weak, as well as raise the worry 
that the model may simply end up being inaccurate due to overfitting.

Part of these worries can be weakened if we observe that models can be use-
ful even if they have unneeded features, as long as modellers are explicit about the 
scope of the model, that is, what aspects of the target are intended to be represented 
by the model (Weisberg , 2013). One strategy, accordingly, would be to indicate that 
the GM model represents understanding states only in so far as it can be useful to do 
so. That it includes features that are not in fact used by the theory of understanding 
but which could perhaps be interpreted as so usable could then be presented as a 
further advantage, in that the model may still be useful if the requirements we make 

Fig. 4  R1 and R2 , and the expansions of their summaries (corrected edges are marked in red)

36 This is analogous to the phenomenon of junk-theorems. Cf. (Hamkins (2020), p. 18).
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of the model changed. Since the model already has those features, we can use it also 
in an exploratory manner (cf. Gelfert (2016)); for example, we can use it to examine 
the question of how to best account for measures of understanding such as robust-
ness, as I already sketched.

6.2  It is not Clear What the Graphical Model Actually Represents

The GM model that CGM builds on the idea that the content of understanding states 
is graphical. But what are the parts of the posited graphs supposed to be? That is, 
what are the vertices and edges that the model describes? In fact, we have already 
summarily touched upon this issue, but it is necessary to make some additional 
observations.

I think we should treat this issue liberally: edges and vertices could in principle 
be anything. The graphical format does not impose any substantive constraint on 
content. Internal graphs may encode, just to give a few examples, logical, causal, 
or spatial structure, and in each of these cases edges and vertices will represent dif-
ferent kinds of objects and relations. What is actually represented will depend on 
the kind of cognitive tasks that these representations could be embedded in. In this 
sense, it is plausible that if there are constraints on content, they are given as con-
straints on the inputs for graph-encoding and -manipulating mechanisms.

This liberal attitude towards the kind of things that the model may represent 
would allow us to incorporate some additional ideas from the literature. In Sect. 2 
we saw how Grimm (2016) suggests that understanding is encoded in ‘mobile 
maps’, taking inspiration from how Gopnik et al. (2004) use Bayes nets to describe 
causal systems. Bayes nets are directed acyclic graphs. Vertices represent causal 
variables, and edges between two vertices Xand Y  represent that changes to the 
value of the X result in specific changes in the value of Y  . This allows users of Bayes 
nets to saturate the nets with values to check for the behavior of the causal systems 
that they represent. Grimm suggests that this can happen more broadly with maps 
that encode all sort of dependency relations. The GM format can capture this idea 
straightforwardly. Furthermore, introducing the element of compression allows for 
causal inference: roughly, variables that make a difference should not be lost when 
compressed without loss of accuracy in the predictions of the net. Furthermore, it 
may be hypothesized that when some X causes Y  , better compression is achieved 
when X is compressed first and then Y  given X , than the other way around.37

6.3  The Model does not Account for Perspective

Related to the previous point, it may be observed that the model does not seem 
to take notice of perspective–which is an important element that a full account of 
understanding needs to talk about (cf. Camp (2019), Massimi (2022)).

37 Cf. Budhathoki and Vreeken (2028), Pranay and Nagaraj (2021), Vreeken (2015) and Wieczorek and 
Roth (2016) for related work.
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I don’t have a settled view on how perspective matters to understanding, but I 
don’t see an intrinsic incompatibility between the GM account and there being per-
spectival effects in understanding. As I pointed out earlier, in some cases we may 
want to deal explicitly with the topological features of graphs, and these may be 
used to encode how a target is seen from a given perspective. The visual metaphor 
is somewhat apt, because we can see pictures and maps (which are clearly able to 
encode perspective) as a special kind of topological graph where nodes have dif-
ferent surfaces with additional properties attached. So, if pictorial and cartographic 
content can encode perspective, so does graphical content.

6.4  Everything that the Model does can be Done in a Purely Dispositional Model

Since on the face of it the CGM model seems thoroughly representationalist, those 
who are uneasy with representationalism would object in principle to the approach 
taken here. There are two possible responses. On the one hand, one could bite on the 
representationalist bullet, and argue that the approach is not less legitimate than any 
other that is put in representationalist terms. On the other hand, one could weaken 
the notion of representation in use, and claim, for example, that whenever we talk 
about representations and content, we could also make do with a functionally equiv-
alent story that involves neither (for example, one could appeal to a story about 
content like those provided by Hutto and Myin (2017) or Moyal-Sharrock (2021)). 
While some would still object to keeping the terminology of content and represen-
tation, pursuing this move may seem more easily defensible than abandoning the 
terminology altogether. There is no room here to settle the issue, but I think the 
GM model could be adopted in some form by both representationalists (straightfor-
wardly) and non-representationalists (with some adjustments).

A different but related objection to the model as presented is that, given that a 
subject’s understanding state is partially characterized by their dispositional state, 
and this can include several abilities to generate graphs on demand, perhaps it is not 
necessary to have an explicit set of internal graphs (possibly held in memory). My 
response is that relying on generating and regenerating graphs on demand is likely to 
be more expensive cognitively than holding on to it in storage, even if architecturally 
doing away with internal graphs is in principle feasible.38

A related worry with the approach is that the model is fundamentally static (it 
only depicts time-slices of understanding processes), and that for that reason it does 
not have the capacity to account for more dynamic marks of understanding such as 
ingenuity and creativity. I acknowledge that this is something that a full account of 
understanding needs to address, and I would admit that it would be a major defi-
ciency of the model if it didn’t allow us to at least partially make sense of this. While 
the model presented here is not intended to be a full account of understanding, 
we can sketch some reasons to think that the CGM’s account has some explana-
tory potential in relation to this issue as well. During inquiry, one may end up in a 

38 This is independent of the issue of whether memory itself could be accounted for non-representation-
aly.
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situation where there is no more relevant information to extract from the resources 
that one already possesses, or where this information cannot be compressed any 
further, without inquiry having settled (I use inquiry only as an example, I believe 
something similar can happen with other types of task). In this case, one often has 
to either gather new information or generate it, or attempt to see or rearrange the 
old information in new ways. Ingenuity can play a role here. In doing this one could 
gain the capacity to compress the content, because we may obtain more structural 
redundancy to exploit.39 So it seems like making things more compressible matters 
to understanding in inquiry. For different tasks, like creating a puzzle or coming up 
with a good research question, one may want to introduce artificial difficulty for 
compression.

6.5  The Model Focuses too much on Internal State

Another issue concerning the implementation of the model is that it seems to focus 
merely on internal properties of understanding states. While nominally the states 
include external graphs, these are only used to assess the accuracy of the internal 
graphs. However, understanding may require active interaction with objects ‘out-
side of the head’, like instruments, props, and other symbolic systems (cf. Yliko-
ski (2014) and Toon (2015)). Internalizing the content of understanding states could 
also prevent us from making sense of collective understanding, if we wanted to 
allow for that (cf. Delariviere (2020)).

The worry is misplaced as a challenge to the graphical model. Internal graphs 
could in principle be in some cases arrangements of things–for example, they could 
be analogue models structured in ways that could be interpreted graphically.40 It 
is also not necessary that internal graphs are owned by particular individuals–they 
could be distributed.

6.6  It is not Clear What Kind of Attribution Story can be Added to the Model

As I said before, it is not my goal to provide a full account of understanding here. 
However, some observations can be useful to show how what I propose here bears 
on the issues of the gradability of understanding and attribution. I hope this also 
clears things up for readers who may struggle to see how the graphical proposal can 
bear on a full account of understanding.

39 It is worth noticing that compressibility can be increased either by introducing falsehoods or by 
introducing new truths. Indirectly, one could then argue that someone could further their understand-
ing through falsehoods, but I think we need to keep those two ideas separate because the contribution of 
compressibility to the degree of understanding could be indirect–again, in this paper I am not attempt-
ing to give an account of the conditions for understanding attribution. On the point of understanding by 
falsehoods, see Rancourt (2015), Le Bihan (2017), Lawler (2021) and Elgin (2022), among many others.
40 In this case, there may also be an internal graph for understanding the analogue model as a system, in 
addition to the model itself encoding graphical structure for understanding the target of the model.
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A typical strategy for building an account of understanding attribution builds 
on an account of degrees of understanding.41 It is well acknowledged that the pos-
session of understanding is a matter of degrees. But what do these degrees meas-
ure? There are many proposals; in Sect. 3 we saw one from Wilkenfeld (2018). In 
that proposal the degree of understanding (in a given context) is a function of the 
capacity to extract information from a compressed representation. In principle, 
someone who adopts a compressible graphical model like the one proposed here 
could endorse something similar–in fact, Wilkenfeld’s proposal could be lifted as 
is and used to give an attribution story. That, however, could be underutilizing the 
resources of the graphical part of the model. Given that this part offers a rich range 
of potential measures for understanding states, the best way to make use of the 
model would be to take the degree of understanding as a function of the structural 
properties of the graphs as well as of the compression level of the relevant represen-
tations; for example, someone could want to say that a state with a more connected 
internal graph has a greater degree of understanding than one that is less connected, 
all else being equal. In some cases, these properties could be more important to the 
appropriateness of someone’s understanding than compression, as is suggested in 
the case of Ted Nelson’s quote in the epigraph. It is important to note that compari-
sons between understanding states can track a wider range of properties than those 
that are expressed in ‘better’ or ‘worse’ judgements, or in outright attributions. As I 
already suggested in Sect. 4.4, the graphical model offers an abundance of potential 
measures for comparisons.

6.7  The Model is not True of Human Understanding

Finally, and most importantly, it may be objected that while the model captures 
a potential format for the content of understanding-like states, it is not clear that 
human understanding can be described as using this kind of format. Ultimately, this 
question is empirical. However, there is an argument to be made to the effect that 
there is some evidence in favor of the applicability to the human case.

First, there is traction to the idea that the format of representations (and the vehi-
cles of mind more broadly) is not (purely) propositional. I will not give an overview 
of the literature here, but it is important to notice at least the literature on so-called 
S-representations and mental maps (Cummins , 1991; Ramsey , 2007; Gladziejew-
ski , 2015; Rescorla , 2009; Blumson , 2011; Gladziejewski & Milkowski , 2017; 
Lee , 2018; Camp , 2018; Shea , 2018), the literature on connectionist models of the 
mind, the literature on causal maps and Bayes nets (Gopnik and Glymour (2002), 
Tenenbaum et al. (2011), and more recently, the literature on graph neural networks 
(GNNs) (cf. Zhou et al. (2022)). This body of research collectively provides a strong 
reason to look into models like GM for a description of human cognition.

41 Cf. Baumberger (2019) for an overview of approaches. An important point of covergence in the litera-
ture is the importance of context to characterize the conditions in which attributions are appropriate. In 
Morales Carbonell (2022) I also give an overview and present my favored approach, which is a form of 
higher-order contextualism (where the parameters for evaluation are also selected by context).
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Second, something similar can be said about the role that compression can play in 
cognition. The literature on predictive coding (Clark , 2013; Hohwy , 2014) suggest 
that compression is a core feature of cognition. There is also a growing literature 
on applications of the MDL principle to the problem of learning (Grünwald , 2007; 
Robinet et al. , 2011).

Consequently, there are independent reasons to think that both structured repre-
sentation and compression are important to human cognition. This makes it plausi-
ble that CGM can serve as a model, not just for understanding-like states of some 
sort, but also for the kind of understanding-like states that are typical of humans.

7  Conclusion

In this paper, I have sketched a model for the format of the content of understand-
ing states, Compressible Graph Maximalism or CGM. The characteristic features of 
CGM are that (1) the format of the content of understanding states is graphical, and 
(2) that this graphical content can be compressed. The model combines the features 
of two important approaches to the nature of understanding, and I have argued that 
this combination offers some advantages. I expect this approach should be of inter-
est to both those who think that understanding involves grasp of structure, and to 
those that think that understanding is compression, since it offers a concrete way 
to think about the format of the representations involved. While some challenges 
can be raised against the view, I think it can withstand them. In particular, one may 
worry if the model is empirically adequate with regard to human cognition. While 
there are reasons to think that it is at least compatible with some recent accounts of 
cognition, and thus is no less plausible than them, it could also be helpful to think of 
it as a framework for thinking about the construction of systems that can understand. 
The current project is thus in line with recent work on naturalized epistemology of 
understanding (cf. Khalifa et al. (2022)).
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